The main focus of this activity is the interrelation between algebraic structure and algorithms. We plan to work on the following subjects:

More precisely, the research project takes place in effective algebraic combinatorics, at the interface of enumerative combinatorics and analysis of algorithms on one hand and symbolic and algebraic computation on the other hand. The objective is twofold: firstly, thanks to vast generalization of the notion of generating series, we hope to give a theoretical framework allowing to study the fine behavior of various algorithms. Reciprocally, the study of those very same algorithms gives a new mean to discover algebraic identities. Those identities have many applications in mathematics, in particular in representation theory but also in physics (mainly statistical physics).

The research relies deeply on computer experimentation and contains as a consequence an important software development part within the Sage-Combinat software project. However, the required level of sophistication, flexibility, and breath of computational tools is reaching a point where large scale collaborative development is critical. The design and collaborative development of such a software is raising research-grade computer science challenges around the modelling of mathematics, the management of large hierarchy of (object oriented) classes, etc.

Those very specific questions also raise more general combinatorial questions. We therefore plan to work on enumerative combinatorics and cellular automaton, in particular on trees. This activity is conducted with close collaborators in France, Germany, North America, and India.

Généralisation des polynômes de Symanzik en dimensions supérieures

-- Matthieu Piquerez (CMLS, Ecole Polytechnique)

Les deux polynômes de Symanzik sont des invariants de graphe utilisés en théorie quantique des champs pour calculer des intégrales de Feynman. Le premier polynôme de Symanzik est le dual du polynôme de Kirchhoff pondéré, qui compte le nombre pondéré d'arbres couvrants d'un graphe. En 2009, Duval, Klivans ...

Expérimentations sur le calcul hautes performances en combinatoire énumérative et algébrique.

-- Florent Hivert (GALAC, LRI)

Summary : In this talk, I will report on several experiments around large scale enumerations in enumerative and algebraic combinatorics. I'll describe a methodology used to achieve large speedups in several enumeration problems. Indeed, in many combinatorial structures (permutations, partitions, monomials, young tableaux), the data can be encoded as a ...

Cartes planaires à degrés prescrits : énumération et limites d'échelle

-- Cyril Marzouk (IRIF, Paris 7)

Une carte planaire finie peut se concevoir comme le recollement topologique de polygones qui forme une sphère ; ainsi, étant donné n polygones, on peut considérer l'ensemble (fini) de tels recollement que l'on peut former. À l'aide d'une bijection avec des arbres étiquetés, nous verrons comment énumérer ...

See all

Translations: fr