Plateau Saclay Combinatorics Seminar

LIX

The Plateau Saclay Combinatorics Seminar is held every Wednesday morning at 10:30 AM in room Flajolet (top floor on the left) at LIX. It is co-organized by the Combi team of LIX and the GALaC team.

The mailing list for this seminar is combi_lix_lri@services.cnrs.fr. Subscribe to this list by sending an email to sympa@services.cnrs.fr with object "subscribe combi_lix_lri@services.cnrs.fr Firstname Lastname", if you want to receive weekly announcements.

If you are interested in giving a talk, feel free to contact the organizers:

The seminar archives (2006 -- 2017) can be found on the old page.

Recent and up-coming seminars

Three interacting families of Fuss-Catalan posets

-- Camille Combe (IRMA, Strasbourg)

We will introduce three families of posets depending on a nonnegative integer parameter \(m\), having underlying sets enumerated by the \(m\)-Fuss Catalan numbers. Among these, one is a generalization of Stanley lattices and another one is a generalization of Tamari lattices. We will see how these three families of ...


Formes limites de permutations à motifs interdits

-- Adeline Pierrot (LRI, Université Paris Saclay)

On s'intéresse aux ensembles de permutations à motifs exclus, appelés classes de permutations, qui ont été beaucoup étudiés en combinatoire énumérative. Dans ce travail, à la frontière entre combinatoire et probabilités, on s'intéresse à la limite d'échelle d'une grande permutation aléatoire uniforme dans une classe de ...

Cardinal d'un ensemble de coupure minimal en percolation de premier passage

-- Marie Théret (Université Paris Nanterre)

On considère le modèle de percolation de premier passage sur \(\mathbb{Z}^d\) en dimension \(d\geq 2\) : on associe aux arêtes du graphe une famille de variables i.i.d. positives ou nulles. On interprète la variable aléatoire associée à une arête comme étant sa capacité, i.e., la ...

Permutahedral matchings, zonotopal tilings, and d-partitions

-- Cesar Ceballos

In this talk I will present higher dimensional generalizations of the following three concepts:

  • (a) perfect matchings of a hexagonal tiling,
  • (b) rhombus tilings of a hexagon, and
  • (c) plane partitions.

I will show that these generalizations are equivalent under certain specific bijections. The generalizations of (b) and (c) have ...

See all

Translations: fr