Graph Theory

The main focus is on structural and algorithmic point of views. The team established expertise includes problems such as finding large cycles in a given graph, graph colorings, covering problems, and extremal graph theory. For example, some team members are particularly interested in Thomassen’s conjecture: Every 4-connected line graph is Hamiltonian. Finding sufficient and computationally tractable conditions for a graph to be Hamiltonian is of significant importance from both theoretical and algorithmic viewpoints as Hamiltonicity is an NP-hard problem.
Generalization of such problems has also been recently considered for edge- or vertex-colored graphs. For example, one may look for properly colored spanning trees in an edge- or a vertex-colored graph. Alternatively, one may look for a dominating set in a vertex colored graph having at least one vertex from each color. Beside their theoretical interest, these extensions have applications in areas including biocomputing and web problems.
Many of the questions we consider can be stated in terms of (integer) linear optimization that is an expertise of new members of the team with research interests focusing on the combinatorial, computational, and geometric aspects of linear optimization. In this regard the aim would be to investigate recent results illustrating the significant interconnection between the most computationally successful algorithms for linear optimization and its generalizations, and the geometric and combinatorial structure of the input. Ideally, the deeper theoretical understanding will ultimately lead to increasingly efficient algorithms. Most of our research collaborations involve French research groups including LaBRI, LIRMM, LIAFA, and LIMOS as well as research groups in Europe, North America, China, Japan, India and South America.
Graph colourings, subcolourings, and beyond
summary: The graph colouring problem is central in Graph Theory: it consists in colouring the vertices of a graph such that each colour class induces an independent set, using as few colours as possible. While very difficult to solve exactly, the problem and its worst cases are now understood quite ...
Algorithms for the Metric Dimension problem on directed graphs
summary: In graph theory, the Metric Dimension problem is the following: we are looking for a minimum-size set R of vertices, such that for any pair of vertices of the graph, there is a vertex from R whose two distances to the vertices of the pair are distinct. This problem ...
Designing truthful mecanism
summary: In this presentation, we will focus on the generalization of knapsack budgeting. Given a set of projects and a budget, each voter selects a subset of projects; we want to maximize social welfare. Different measures can describe this (maximizing the minimum utility of the players, maximizing the sum of ...
Translations: fr