Combinatoire

L'intérêt principal de cette activité est l'étude des relations entre les structures algébriques et les algorithmes. Les chercheurs s'attachent particulirement aux sujets suivants:

Plus précisément, les projets de recherches relèvent de la combinatoire algébrique, sont à l'interface de la combinatoire énumérative et concernent l'analyse d'algorithmes d'un point de vue des calculs symboliques et algébriques ou de calcul algébriques. Les objectifs sont doubles: d'abord, grâce à une généralisation masive de la notion de série génératrice nous espérons proposer un canevas théorique permettant l'étude du comportement fin de nombreux et différents algorithmes et ensuite et de manière réciproque l'étude des même algorithmes ouvre de nouvelles pistes pour la découverte d'objets ou d'identités algébriques d'intérêt. Ces identités ont plusieurs applications en mathématiques, en particulier dans la théorie des représentations mais aussi en physique (principalement en physique statistique).

Les recherches reposent largement sur l'expérimentation par ordinateur, il s'en suit une part importante de développement via le projet logiciel Sage-Combinat.

Cependant, le niveau de sophistication, la souplesse et la qualité des outils de calcul requis atteint un point où à grande échelle le développement collaboratif est essentiel. La conception et le développement collaboratif d'un tel logiciel soulève la recherche de qualité. Les défis sont tant du domaine de l'informatique qu'autour de la modélisation mathématique et de la gestion d'un grande hiérarchie de (orientée objet) classes, etc.

Ces questions spécifiques posent aussi de manière plus générale des questions combinatoires. Il est alors envisager un travail sur la combinatoire enumérative, les automates cellulaires en particulier les arbres.

Cet axe nourrit des collaborations régulières en France mais aussi avec l'Allemagne, l'Amérique du nord et l'Inde.

Cyclic sieving for reduced reflection factorizations of the Coxeter element

-- Theo Douvropoulos (IRIF, Paris 7 Diderot)

Given a factorization \(t_1\cdots t_n=c\) of some element \(c\) in a group, there are various natural cyclic operations we can apply on it; one of them is given by \(\Psi:(t_1,\cdots,t_n)\rightarrow (c\ t_n\ c^{-1},t_1,\cdots, t_{n-1})\). A common question is then to ...

Binary pattern of length greater than 14 are abelian-2-avoidable

-- Matthieu Rosenfeld (GALAC, LRI)

Summary: Two words u and v are abelian equivalent if they are permutation of each other ("aabc" and "baca" are abelian equivalent). Let w be a word and P= P1...Pn (where the Pi are the letters of P) a pattern (a word over another alphabet), we say that w ...


Convergence of uniform noncrossing partitions toward the Brownian triangulation

-- Jérémie Bettinelli (LIX, équipe Combi)

We give a short proof that a uniform noncrossing partition of the regular \(n\)-gon weakly converges toward Aldous's Brownian triangulation of the disk, in the sense of the Hausdorff topology. This result was first obtained by Curien and Kortchemski, using a more complicated encoding. Thanks to a result ...

See all

Translations: en