Combinatoire

L'intérêt principal de cette activité est l'étude des relations entre les structures algébriques et les algorithmes. Les chercheurs s'attachent particulirement aux sujets suivants:

Plus précisément, les projets de recherches relèvent de la combinatoire algébrique, sont à l'interface de la combinatoire énumérative et concernent l'analyse d'algorithmes d'un point de vue des calculs symboliques et algébriques ou de calcul algébriques. Les objectifs sont doubles: d'abord, grâce à une généralisation masive de la notion de série génératrice nous espérons proposer un canevas théorique permettant l'étude du comportement fin de nombreux et différents algorithmes et ensuite et de manière réciproque l'étude des même algorithmes ouvre de nouvelles pistes pour la découverte d'objets ou d'identités algébriques d'intérêt. Ces identités ont plusieurs applications en mathématiques, en particulier dans la théorie des représentations mais aussi en physique (principalement en physique statistique).

Les recherches reposent largement sur l'expérimentation par ordinateur, il s'en suit une part importante de développement via le projet logiciel Sage-Combinat.

Cependant, le niveau de sophistication, la souplesse et la qualité des outils de calcul requis atteint un point où à grande échelle le développement collaboratif est essentiel. La conception et le développement collaboratif d'un tel logiciel soulève la recherche de qualité. Les défis sont tant du domaine de l'informatique qu'autour de la modélisation mathématique et de la gestion d'un grande hiérarchie de (orientée objet) classes, etc.

Ces questions spécifiques posent aussi de manière plus générale des questions combinatoires. Il est alors envisager un travail sur la combinatoire enumérative, les automates cellulaires en particulier les arbres.

Cet axe nourrit des collaborations régulières en France mais aussi avec l'Allemagne, l'Amérique du nord et l'Inde.

Bijections for tree-decorated maps and applications to random maps

-- Luis Fredes (LaBRI, Bordeaux)

We introduce a new family of maps, namely tree-decorated maps where the tree is not necessarily spanning. To study this class of maps, we define a bijection which allows us to deduce combinatorial results, recovering as a corollary some results about spanning-tree decorated maps, and to understand local limits. Finally ...

Synchronizing codes, finite monoids of matrices and unambiguous automata

-- Andrew Ryzhikov (IGM, Paris-est)

We introduce a new family of maps, namely tree-decorated maps where the tree is not necessarily spanning. To study this class of maps, we define a bijection which allows us to deduce combinatorial results, recovering as a corollary some results about spanning-tree decorated maps, and to understand local limits. Finally ...

Des tresses aux amas via la dualité de Koszul

-- Matthieu Josuat-Vergès (UPEM)

Il est bien connu que le groupe de tresses admet une présentations avec des générateurs qui satisfont les relations de tresses. On peut voir ces générateurs comme échangeant deux brins voisins du point de vue géométrique. Une autre présentation, due à Birman, Ko, Lee, consiste à regarder un ensemble plus ...

See all

Translations: en