Théorie des graphes

Le sujet principal est une point de vue structurel et algorithmique. L'équipe a établi une expertise comprennant les problèmes tel que trouver les grands cylcles d'un graphe donné, colorier un graphe, résoudre des problèmes de couverture, ou faire avancer la théorie des graphes en trouvant les graphes extrèmes répondant à une contrainte.

La généralisation de quelques problèmes est aussi considérée pour les graphes arêtes ou sommets colorés. Par exemple, il a été étudié les graphes couvrants colorés pour des graphes arêtes ou sommets colorés. De manière alternative il a été recherche l'ensemble dominant dans un graphe ayant au moins un sommet de chaque couleur. au delà de l'intérêt purement théoriques ces démarches ont un grand intérêt aussi bien dans le domaine de la bioinformatique que dans celui du Web.

Bon nombre des questions que nous considérons peuvent aussi être déclarée en termes d'optimisation de linéaire. Ce qui ouvre des persepectives.

Nous avons de nombreuses collaborations avec les groupes français : LaBRI, LIRMM, LIAFA et LIMOS aussi bien qu'en Europe, en Amérique du nord et du sud et principalement en Asie avec la Chine, le Japan, l'Inde.

On the Structure of Potential Counterexamples to the Borodin-Kostochka Conjecture

-- Jonathan Narboni (LaBRI)

summary: The Borodin-Kostochka conjecture, a long-standing problem in graph theory, asserts that every graph \(G\) with maximum degree \(\Delta \geq 9\) satisfies \(\chi(G) \leq max \{\Delta - 1, \omega(G)\}\) where \(\chi(G)\) and \(\omega(G)\) are respectively the chromatic number and the clique number of \(G\). While the conjecture ...

Excluding a rectangular grid

-- Clément Rambaud (Université Côte d'Azur)

summary: For every positive integer k, we define the k-treedepth as the largest graph parameter td_k satisfying (i) td_k(∅)=0; (ii) td_k(G) <= 1+ td_k(G-u) for every graph G and every vertex u; and (iii) if G is a (

Eliminating more than vertices in graphs

-- Thomas Delépine (Université Paris-Saclay)

summary: Considérons le jeu suivant sur un graphe. À chaque tour, le joueur peut enlever un sommet de chaque composante connexe du graphe courant. Le but du jeu est d’éliminer tous les sommets du graphe. Le nombre minimum de tours nécessaires est appelé la treedepth du graphe. C’est ...

See all

Translations: en