GALaC team at LRI, Paris-Sud

GALaC is a research group at LRI, Paris-Sud University. We are focused on graph theory, combinatorics and network distributed systems algorithmic.

A global presentation of research activities in GALaC was made in 2013 for the AERES evaluation: Slides AERES 2013 and projet.

Recent Posts

À la lumière de quelques propriétés essentielles

-- Thomas Karam (Univ. Oxford)

Cet exposé consistera en quatre parties, chacune commençant par une introduction à un domaine de recherche et terminant par quelques contributions.

Nous débuterons par expliquer comment la conjecture polynomiale de Hales-Jewett à densité unifie plusieurs des généralisations du théorème de van der Waerden, ainsi que comment cette généralisation commune présente ...


On the intervals of framing lattices

-- Loïc Le-Mogne (LaBRI)

summary: A flow graph G is an acyclic oriented graph with \(V(G) = [n]\), \(E(G)\) a multi-set of edges where each edge \((i,j)\) satisfies \(i<j\), and such that \(G\) has a unique source \(s=1\) and sink \(t=n\). On such a graph, a route is simply ...

On the Structure of Potential Counterexamples to the Borodin-Kostochka Conjecture

-- Jonathan Narboni (LaBRI)

summary: The Borodin-Kostochka conjecture, a long-standing problem in graph theory, asserts that every graph \(G\) with maximum degree \(\Delta \geq 9\) satisfies \(\chi(G) \leq max \{\Delta - 1, \omega(G)\}\) where \(\chi(G)\) and \(\omega(G)\) are respectively the chromatic number and the clique number of \(G\). While the conjecture ...

Excluding a rectangular grid

-- Clément Rambaud (Université Côte d'Azur)

summary: For every positive integer k, we define the k-treedepth as the largest graph parameter td_k satisfying (i) td_k(∅)=0; (ii) td_k(G) <= 1+ td_k(G-u) for every graph G and every vertex u; and (iii) if G is a (

See all

Translations: fr