(q,t)-symmetry in triangular partitions

-- Loïc Le Mogne (LISN, Galac)

Time: 14:00 -- Location: LRI, 445

summary: The study of Dyck paths and parking functions combinatorics is a central piece of the Diagonal Harmonic Polynomials theory. It is the origin of many currents problems of algebraic combinatorics. Interactioncs between Dyck paths, parking functions, the Tamari lattice, symmetric functions and other fields of mathematics or physics have emerged in recent years. Two fundamental statistics on Dyck paths, the area under a path and the number of diagonal inversions (also known as d-inv) play a key part in these interactions.
Historically, many generalization of Dyck paths have been studied. The first generalization, a very natural one, has been to study partition of the shape (mk, m(k − 1), ..., m), leading to what is know as the Fuss-Catalan numbers. Then the study of partitions under a line from (0, m) to (n, 0) with m and n co-prime integers led to the Rational Catalan combinatorics. Afterward, the co-primality was dropped, leading to the Rectangular Catalan combinatorics Finally, the last generalization, and the one we will place ourselves in, is the study of the partition lying under a line from (0, s) to (r, 0), r and s being two positive real numbers.

Category: seminars
Tags: Team seminar combinatorics