Twenty Thousand Leagues under the Words

Combinatorics on words, symbolic dynamics, and S-adic representations

Pierre BÉAUR

What is a word?

A word?

- a (finite) alphabet \mathcal{A} (e.g. $\{a, b\}$)
- a succession of letters $a_0a_1\ldots a_{n-1}$ (e.g. abbab)
- the set of all words: \mathcal{R}^*

What is a word?

A word?

- a (finite) alphabet \mathcal{A} (e.g. $\{a, b\}$)
- a succession of letters $a_0a_1\ldots a_{n-1}$ (e.g. abbab)
- the set of all words: \mathcal{R}^*

What is an infinite word?

An infinite word?

- a finite alphabet \mathcal{A} , still
- the same, but an infinite succession $a_0a_1a_2a_3a_4a_5\ldots$
- set of infinite words: $\mathcal{A}^{\mathbb{N}}$

Constant word

aaaaaaaaaaaaaaaaaa...

Periodic word

abaaabaaabaaabaaabaaabaa...

Ultimately periodic word

baabbba abaaabaaabaaabaaabaa...

Constant word

aaaaaaaaaaaaaaaaaa...

Periodic word

abaaabaaabaaabaaabaaabaa...

Ultimately periodic word

baabbba abaaabaaabaaabaaabaa...

 \Rightarrow why are they easy?

A factor

a contiguous subword : $bacb \leq_f abbcbaaabccbacbaccbabccca$

A classical/natural question

How many different factors of length n in w?

A factor

a contiguous subword : $bacb \leq_f abbcbaaabccbacbaccbabccca$

A classical/natural question

How many different factors of length n in w?

Complexity function $p_n(w)$

 $p_n(w) = \#$ of **different factors** of length n in wRemark: $p_n(w) \le |\mathcal{A}|^n$, exponential bound reached by universal words

A factor

a contiguous subword : $bacb \leq_f abbcbaaabccbacbaccbabccca$

A classical/natural question

How many different factors of length n in w?

Complexity function $p_n(w)$

 $p_n(w) = \#$ of **different factors** of length *n* in *w*

Remark: $p_n(w) \leq |\mathcal{A}|^n$, exponential bound reached by universal words

for the periodic word w = abaaabaaabaaabaaabaaabaaabaaabaa...

factor size	1	2	3	4	5	6	7	8
# factors	2	3	3	4	4	4	4	4

A factor

a contiguous subword : $bacb \leq_f abbcbaaabccbacbaccbabccca$

A classical/natural question

How many different factors of length n in w?

Complexity function $p_n(w)$

 $p_n(w) = \#$ of **different factors** of length *n* in *w*

Remark: $p_n(w) \leq |\mathcal{A}|^n$, exponential bound reached by universal words

for the periodic word w = abaaabaaabaaabaaabaaabaaabaaabaa...

factor size	1	2	3	4	5	6	7	8
# factors	2	3	3	4	4	4	4	4

A first result?

If w is (ultimately) periodic, then $(p_n(w))_{n\in\mathbb{N}}$ is bounded.

Pierre BÉAUR

My first theorem in combinatorics on words

a generalization:

Morse-Hedlund theorem

w is ultimately periodic \iff there is $n \in \mathbb{N}$ s.t. $p_n(w) \leq n$.

• a generalization:

Morse-Hedlund theorem

w is ultimately periodic \iff there is $n \in \mathbb{N}$ s.t. $p_n(w) \leq n$.

a proof:

- w ultimately periodic $\implies p_n(w) \le n$
- reciprocate:
 - $p_n(w)$ increasing with n
 - if $p_1(w) = 1$: $w = aaaaaaaaa \dots$
 - else, there is 1 < k < n, $p_k(w) = p_{k+1}(w)$
 - \Rightarrow **bijection** between {factors of length k} and {factors of length k + 1}
 - let ϕ : {factors of length k} \rightarrow {factors of length k + 1}

```
a_0a_1\ldots a_{k-1}a_k\mapsto a_0a_1\ldots a_{k-1}
```

conclusion on the blackboard!

Morse-Hedlund theorem

w is ultimately periodic \iff there is $n \in \mathbb{N}$ s.t. $p_n(w) \leq n$.

Sturmian words

w is **Sturmian** iff $p_n(w) = n + 1$ for all n.

Properties of Sturmian words

- they exist!
- the simplest aperiodic words (with many regular properties)
- many combinatorial interpretations!

Morse-Hedlund theorem

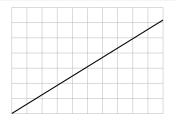
w is ultimately periodic \iff there is $n \in \mathbb{N}$ s.t. $p_n(w) \leq n$.

Sturmian words

w is **Sturmian** iff $p_n(w) = n + 1$ for all n.

Properties of Sturmian words

- they exist!
- the simplest aperiodic words (with many regular properties)
- many combinatorial interpretations!



- an irrational slope
- the grid
- a = crossing a vertical line,

b = horizontal

(if both: you choose)

Morse-Hedlund theorem

w is ultimately periodic \iff there is $n \in \mathbb{N}$ s.t. $p_n(w) \leq n$.

Sturmian words

w is **Sturmian** iff $p_n(w) = n + 1$ for all n.

Properties of Sturmian words

- they exist!
- the simplest aperiodic words (with many regular properties)
- many combinatorial interpretations!

- an irrational slope
- the grid
- a = crossing a vertical line,

b = horizontal

(if both: you choose)

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

 $\sigma^0(a) = a$

take $\sigma : a \mapsto ab, b \mapsto a$, iterate on a

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

 $\sigma^0(a) = a$ $\sigma^1(a) = ab$

take $\sigma : a \mapsto ab, b \mapsto a$, iterate on a

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

 $\sigma^{0}(a) = a$ $\sigma^{1}(a) = ab$ take $\sigma : a \mapsto ab, b \mapsto a,$ $\sigma^{2}(a) = \sigma(ab) = ab \ a = aba$ iterate on a

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

take $\sigma : a \mapsto ab, b \mapsto a$, iterate on a

An example of substitution

 $\mu : a \mapsto bc, b \mapsto aaa, c \mapsto abc$ $\mu(abca) = \mu(a)\mu(b)\mu(c)\mu(a) = bcaaaabcbc$

take $\sigma : a \mapsto ab, b \mapsto a$, iterate on a it builds a longer and longer word

 \Rightarrow an **infinite word**?

Pierre BÉAUR

- . . . but it builds a long finite word
- need a topology/convergence

An idea of the topology

 $(w_n)_{n \in \mathbb{N}}$ converges towards an infinite word w ($w_n \xrightarrow[n \to +\infty]{n \to +\infty} w$) if for every **position** p in w, there is a moment where every w_n are long enough and all agree on the position p. aaaaaaab

. . .

. . .

. . .

. . .

<mark>a</mark> bbb	$\sigma^0(a) = a$
aaab	$\sigma^1(a) = ab$
<mark>aa</mark> baa	$\sigma^2(a) = aba$
<mark>aaaa</mark> aabab	$\sigma^3(a) = abaab$
aaaaaab	$\sigma^4(a) = abaababa$
aaaababba	$\sigma^5(a) = abaababaabaab$
aaaaaa	$\sigma^6(a)$ = abaababaabaabaabaababa
aaaaaaab	$\sigma^7(a)$ = abaababaabaabaabaabaabaabaabaabaabaabaa

 \Rightarrow $(\sigma^n(a))_{n\in\mathbb{N}}$: (here) a prefix sequence of words

. . .

• the limit: a substitutive word

Question

For which substitution σ is there a letter a s.t. $(\sigma^n(a))_{n \in \mathbb{N}}) \xrightarrow[n \to \infty]{} w \in \mathcal{A}^{\omega}$?

Answer (folk.)

Iff there is b such that $\sigma(b)$ begins with b (the limit exists), and b can be reached with an expansion (the limit is an infinite word).

- an effective way to compute the prefixes
- a whole family of new words!

Question

For which substitution σ is there a letter a s.t. $(\sigma^n(a))_{n \in \mathbb{N}}) \xrightarrow{} w \in \mathcal{A}^{\omega}$?

Answer (folk.)

Iff there is b such that $\sigma(b)$ begins with b (the limit exists), and b can be reached with an expansion (the limit is an infinite word).

- an effective way to compute the prefixes
- a whole family of new words!

Some substitutive words

• in fact, a Sturmian word \heartsuit

• not Sturmian: $p_n(w) = 4n$

Substitutive words

Combinatorial properties of substitutive words

- fix-points of their substitution
- $p_n(w) = O(n^2)$
- has a recurrent suffix

What this means

recurrent: every factor appears infinitely often

Substitutive words

Combinatorial properties of substitutive words

- fix-points of their substitution
- $p_n(w) = O(n^2)$
- has a recurrent suffix
- if the substitution is primitive:
 - $p_n(w) = O(n)$
 - w minimal and linearly recurrent

What this means

recurrent: every factor appears infinitely often

primitive: a "non-degenerate" substitution

uniformly/linearly recurrent: bounds on the gaps between occurences

Substitutive words

Combinatorial properties of substitutive words

- fix-points of their substitution
- $p_n(w) = O(n^2)$
- has a recurrent suffix
- if the substitution is primitive:
 - $p_n(w) = O(n)$
 - w minimal and linearly recurrent

What this means

recurrent: every factor appears infinitely often

primitive: a "non-degenerate" substitution

uniformly/linearly recurrent: bounds on the gaps between occurences

Historically a counterintuitive word

Thue-Morse word: first example of an aperiodic linearly recurrent word

Many questions

Given a substitution (or two):

- is the limit word ultimately periodic?
- is the limit word uniformly recurrent?
- are the two limit words equal?

Many questions

Given a substitution (or two):

- is the limit word ultimately periodic?
- is the limit word uniformly recurrent?
- are the two limit words equal?

Durand, ~1995-2002

It is all decidable.

For connoisseurs

- also for morphic words
- as well as isomorphism between minimal subst. systems
- and one system being the factor of another

We were all rooting for you!

- many results for $\lim_{n \to \infty} (\sigma^n(a))_{n \in \mathbb{N}}!$
- but boring: always iterating the same substitution. . .

Even worse

Most Sturmian words are **not** substitutive.

 \Rightarrow let's take a generalization!

We were all rooting for you!

- many results for $\lim_{n \in \mathbb{N}} (\sigma^n(a))_{n \in \mathbb{N}}!$
- but boring: always iterating the same substitution. . .

Even worse

Most Sturmian words are **not** substitutive.

\Rightarrow let's take a generalization!

S-adic representation

Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n\in\mathbb{N}}$ a sequence of letters. *w* is generated by the S-adic representation $(\sigma_n, a_n)_{n\in\mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

... what does it mean?

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. w is generated by the S-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

 $L_a(b) = ab$

- $L_a: a \mapsto a, b \mapsto ab$ $L_b: a \mapsto ba, b \mapsto b$

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. *w* is generated by the *S*-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

- an example using two substitutions:
- $L_a: a \mapsto a, b \mapsto ab$
- $L_b: a \mapsto ba, b \mapsto b$

$$L_a(b) = ab$$
$$L_aL_b(b) = L_a(b) = ab$$

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. *w* is generated by the *S*-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

- an example using two substitutions:
- $L_a: a \mapsto a, b \mapsto ab$
- $L_b: a \mapsto ba, b \mapsto b$

$$\begin{array}{l} L_a(b) = ab \\ L_a L_b(b) = ab \\ L_a L_b L_a(b) = L_a L_b(ab) = L_a(bab) = abaab \end{array}$$

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. *w* is generated by the *S*-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

- an example using two substitutions:
- $L_a: a \mapsto a, b \mapsto ab$
- $L_b: a \mapsto ba, b \mapsto b$

 $L_{a}(b) = ab$ $L_{a}L_{b}(b) = ab$ $L_{a}L_{b}L_{a}(b) = abaab$ $L_{a}L_{b}L_{a}L_{a}(b) = L_{a}L_{b}L_{a}(ab) = \cdots = abaabaab$

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. *w* is generated by the *S*-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

- an example using two substitutions:
- $L_a: a \mapsto a, b \mapsto ab$
- $L_b: a \mapsto ba, b \mapsto b$

$$L_{a}(b) = ab$$

$$L_{a}L_{b}(b) = ab$$

$$L_{a}L_{b}L_{a}(b) = abaab$$

$$L_{a}L_{b}L_{a}L_{a}(b) = abaabaab$$

$$L_{a}L_{b}L_{a}L_{a}L_{b}(b) = abaabaab$$

S-adic representation

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a sequence of substitutions, and $(a_n)_{n \in \mathbb{N}}$ a sequence of letters. *w* is generated by the *S*-adic representation $(\sigma_n, a_n)_{n \in \mathbb{N}}$ if

$$w = \lim_{n \to \infty} \sigma_0 \circ \sigma_1 \circ \cdots \circ \sigma_n(a_n)$$

- an example using two substitutions:
- $L_a: a \mapsto a, b \mapsto ab$
- $L_b: a \mapsto ba, b \mapsto b$

 $\begin{array}{l} L_a(b) = ab \\ L_aL_b(b) = ab \\ L_aL_bL_a(b) = abaab \\ L_aL_bL_aL_a(b) = abaabaab \\ L_aL_bL_aL_aL_b(b) = abaabaab \\ L_aL_bL_aL_aL_b(b) = abaabaabaabaabaabaab \\ \Rightarrow \text{ composition is backwards, at the end} \end{array}$

• why are they cool?

Berstel-Séébold 2002

There are 4 subs. s.t. w is Sturmian $\iff w$ has an S-adic rep. using them.

Generalized: Arnoux-Rauzy 2007, Gheeraert-Leroy-Lejeune 2021

Arnoux-Rauzy words and minimal dendric ternary words (= other interesting families of words) have an S-adic characterization.

• why are they cool?

Berstel-Séébold 2002

There are 4 subs. s.t. w is Sturmian $\iff w$ has an S-adic rep. using them.

Generalized: Arnoux-Rauzy 2007, Gheeraert-Leroy-Lejeune 2021

Arnoux-Rauzy words and minimal dendric ternary words (= other interesting families of words) have an S-adic characterization.

Ferenczi 1996

If a word w is aperiodic, is uniformly recurrent and has a linear complexity, then w admits an S-adic representation.

The S-adic conjecture

Can we find a condition C s.t.

w has an S-adic rep. following condition C iff w has linear complexity ?

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{I\}$.

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{I\}$.

Proof:

• for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{I\}$.

Proof:

- for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$
- for $w = abcdefgh \dots$: $\phi_a(l) = a$

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{l\}$.

Proof:

- for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$
- for $w = abcdefgh \dots$: $\phi_a(l) = a$ $\phi_a L_b(l) = \phi_a(lb) = ab$

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{l\}$.

Proof:

- for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$
- for $w = abcdefgh \dots$: $\phi_a(l) = a$ $\phi_a L_b(l) = ab$ $\phi_a L_b L_c(l) = \phi_a L_b(lc) = \phi_a(lbc) = abc$

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{l\}$.

Proof:

• for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$ • for $w = abcdefgh \dots$: $\varphi_a(l) = a$ $\varphi_a L_b(l) = ab$ $\varphi_a L_b L_b(l) = abc$ $\varphi_a L_b L_c L_d L_e L_f L_a L_h(l) = abcdefgh$

If w is defined on the alphabet \mathcal{A} , then w has an S-adic representation using the alphabet $\mathcal{A} \cup \{I\}$.

Proof:

• for any $a \in \mathcal{A}$, $L_a : l \mapsto la$, $\phi_a : l \mapsto a$, $(L_a(b) = \phi_a(b) = b)$ • for $w = abcdefgh \dots$: $\phi_a(l) = a$ $\phi_a L_b(l) = ab$ $\phi_a L_b L_b(l) = abc$ $\phi_a L_b L_c L_d L_e L_f L_a L_h(l) = abcdefgh$

A limitation (Cassaigne 2009, too)

If we **forbid cheat letters**, universal words don't have any S-adic representations.

Hi Mom, I'm on TV!

An S-adic system

Wit \mathfrak{S} a set of substitutions, $S_{\mathfrak{S}}$ is the set of words with an S-adic rep. using \mathfrak{S} .

Questions

Given a set of substitutions \mathfrak{S} :

is S_☉ empty?

Given a second set of substitutions \mathfrak{T} :

• is $S_{\mathfrak{S}} \cap S_{\mathfrak{T}}$ empty?

Given a finite ω -automata \mathfrak{A} :

• is $S_{\mathfrak{S}} \cap \mathcal{L}(\mathfrak{A})$ empty?

Hi Mom, I'm on TV!

An S-adic system

Wit \mathfrak{S} a set of substitutions, $S_{\mathfrak{S}}$ is the set of words with an S-adic rep. using \mathfrak{S} .

Questions

Given a set of substitutions \mathfrak{S} :

Is S_☉ empty?

Given a second set of substitutions \mathfrak{T} :

• is $S_{\mathfrak{S}} \cap S_{\mathfrak{T}}$ empty?

Given a finite ω -automata \mathfrak{A} :

• is $S_{\mathfrak{S}} \cap \mathcal{L}(\mathfrak{A})$ empty?

B.-Hellouin, draft 2022?

It is decidable!

Application

I can decide if there is a Sturmian word accepted by an ω -automaton!

- a very old field of research, many links with computation, numeration systems, text algorithms, . . .
- the very (easy) basis of symbolic dynamics
- in general: all's well that ends well
- in search of a difficulty: would mean links with calculability theory

Thank you! Questions?