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Penrose tilings Definition of the Penrose rhombus tilings

Penrose rhombus tiling
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Penrose tilings Definition of the Penrose rhombus tilings

Original definition [Penrose, 1974]
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Penrose tilings Definition of the Penrose rhombus tilings

Improved definition [De Bruijn, 1981]
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Penrose tilings Definition of the Penrose rhombus tilings

Label simplification

A bit of formalism:
geometrical tile : t a compact of R2, here a rhombus,
labelled tile : (t, l) with t a geometrical tile, and l a function from t to a finite alphabet A,
label condition: for any two tiles (t, l) and (t′, l ′), we have ∀x ∈ t ∩ t′, l(x) = l ′(x).

The label simplification π is defined as π(t, l) = t.

Xa := tilings with the arrow-labelled tiles,
Xp := π(Xa) its projection.
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Penrose tilings First properties

First properties [Grünbaum and Shephard, 1987]

The subshift of geometrical Penrose rhombus tilings Xp is defined as:

Xp := π(Xa)

First properties:
1 Xp is non empty.
2 Xp is aperiodic i.e. does not contain any periodic tilings.

Remark
We call this a sofic aperiodic subshift i.e. the projection of a SFT.
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Penrose tilings Additional properties

Substitution

Xp = π(Xσ)
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Penrose tilings Additional properties

Substitution, metatiles and decomposition
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Penrose tilings Additional properties

Canonical Penrose tiling: limit tiling from a seed
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Penrose tilings Additional properties

Canonical Penrose tiling: limit tiling from a seed

By compacity there exists a Penrose tiling of the full plane.
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Penrose tilings Additional properties

Canonical Penrose tiling: limit tiling from a seed

T := lim
n→∞

σ4n(S)
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Penrose tilings Additional properties

Canonical Penrose tiling and rotational symmetry

Crystallographic restriction: periodic tilings can only have 2, 3, 4 or 6-fold rotational symmetry.
⇒ a tiling with 10-fold rotational symmetry is non-periodic.

The Penrose tilings have local 10-fold rotational symmetry, so they are non-periodic.
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Penrose tilings Additional properties

Quasicrystal tiling [Senechal, 1996]

Quasicrystal : sharp diffraction pattern, but non-periodic.
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Penrose tilings Additional properties

Quasicrystal tilings

Two models for quasicrystal tilings:
Discrete plane : lifted in Rn it approximates a plane.
Cut-and-project : lifted in Rn it strongly approximates a plane :

its vertex set is exactly (E + Ω)Zn where E is the plane and Ω a compact.
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Penrose tilings Additional properties

Penrose tiling overview [Baake and Grimm, 2013]

The Penrose subshift Xp is :

an aperiodic subshift with 10-fold local symmetry

a sofic subshift Xp = π(Xa)

a substitution subshift Xp = Xσ

a subshift of quasicrystal tilings
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Penrose tilings Main result

Today’s result

Theorem (folk., Fernique-L. 2022)

There exists a finite set of local rules without labels for Penrose rhombus tilings.

⇒ Xp is a Subshift of Finite Type.

Remark
The local rules will be given by a set of allowed patterns called vertex atlas instead of a set of
forbidden patterns.
Note that for tilings with finite local complexity a (finite) vertex-atlas is equivalent to a finite set
of forbidden patterns.
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Vertex-atlas Definition

Local rules: vertex-atlas

N k
T (x) : the k-neighbourhood of a vertex x in a tiling is the patch of tiles that are at

edge-distance at most k from x .
For example the 0-neighbourhood of a vertex x is the patch of tiles that directly touch x .

Ak : a k-vertex atlas is a set of k-neighbourhoods.

N k
T : the set of all k-neighbourhoods of the tiling T (or subshift X).

XA : subshift of all the tilings T such that N k
T ⊆ A.
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Vertex-atlas 0-atlas

0-atlas

Definition
Let us define A0 as pictured below up to isometry

Proposition (folk.)

With Xp the Penrose subshift we have
N 0

Xp = A0.

Theorem
With Xp the Penrose subshift we have

Xp ⊊ XA0 ,

i.e. there are tilings that have the same 0-neighbourhoods as Penrose but are not Penrose tilings.
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Vertex-atlas 0-atlas

Proof

There exists a periodic tiling in XA0 , however Xp is an aperiodic subshift so Xp ⊊ XA0 .
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Vertex-atlas 0-atlas

The key point of why it does not work (and why some people think it does).

The patterns in A0 admit a unique valid labelling, except the 5-star that admits two.

However that does not mean that a pattern that is valid for A0 admits a valid labelling, the
labelling "does not propagate" :
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1-atlas Definition

Penrose’s 1-neighbourhoods

Proposition (1-neighbourhoods)

With Xp the Penrose subshift we have N 1
Xp

= A1 (pictured here up to isometry)
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1-atlas Definition

The 1-atlas defines Penrose

Theorem
With Xp the Penrose subshift, and with the 1-atlas A1 defined in the previous proposition we have

XA1 = Xp .

Recall that initially the Penrose subshift is defined as a sofic subshift with Xp := π(Xa),
now with this characterisation Xp = XA1 we obtain that Xp is a Subshift of Finite Type (SFT).
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1-atlas Unique labelling

Proposition
The patterns of A1 have a unique labelling:
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1-atlas Propagation

Lemma

Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let l(t) be a
Penrose labelling of the tile t.
There exists at most one valid Penrose labelling L of P such that L(t) = l(t).
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1-atlas Propagation

Lemma
Let P1 and P2 be two edge-connected patches of geometrical Penrose tiles such that :

P1 ∪ P2 is a patch (i.e. simply connected set of non-overlapping tiles)
P1 ∩ P2 is non-empty and edge-connected
P1 \ P2 is not edge connected to P2 \ P1

P1 has a valid Penrose labelling L1

P2 has a valid Penrose labelling L2

If there exists a tile t in P1 ∩ P2 such that L1(t) = L2(t) then there exists a valid Penrose
labelling L of P1 ∪ P2.
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1-atlas Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P.
We say that a finite patch P is exact for A1 if, with V1(P) the set of 1-interior vertices of P,
V1(P) is connected, we have N x

P (1) ∈ A1 for all x ∈ V1(P) and P is exactly the union of the
1-neighbourhoods.

Proposition
Let P be an exact patch for the vertex-atlas A1.
P admits a unique valid Penrose labelling L.

Proposition
Let T be a valid tiling for A1.
T has a (unique) valid Penrose labelling and so it is a Penrose tiling.
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P (1) ∈ A1 for all x ∈ V1(P) and P is exactly the union of the
1-neighbourhoods.

Proposition
Let P be an exact patch for the vertex-atlas A1.
P admits a unique valid Penrose labelling L.

Proof.

By induction on the number of 1-interior vertices.
1 : an exact patch with 1 1-interior vertex is exactly a 1-
neighbourhood, i.e. a patch in A1 up to isometry, these
patch have a valid Penrose labelling.
n → n + 1 : we can decompose Pn+1 as Pn ∪ P with Pn
an exact patch (for A1) with n 1-interior vertices and P an
exact patch with 1 1-interior vertex. We apply the previous
lemma.
Note that the fact that both Pn+1 and Pn are exact patches is a strong condition.
This means that P is the 1-neighbourhood of a suitably chosen vertex v ∈ V1(Pn+1).

Proposition
Let T be a valid tiling for A1.
T has a (unique) valid Penrose labelling and so it is a Penrose tiling.
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1-atlas Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P.
We say that a finite patch P is exact for A1 if, with V1(P) the set of 1-interior vertices of P,
V1(P) is connected, we have N x

P (1) ∈ A1 for all x ∈ V1(P) and P is exactly the union of the
1-neighbourhoods.

Proposition
Let P be an exact patch for the vertex-atlas A1.
P admits a unique valid Penrose labelling L.

Proposition
Let T be a valid tiling for A1.
T has a (unique) valid Penrose labelling and so it is a Penrose tiling.

Proof.

We can build a sequence of increasing (non-empty) exact patches (Pn)n∈N that tends to the
whole tiling.
For all n we have Pn ⊆ Pn+1, and Pn has a unique valid Penrose labelling. So the labelling of
Pn+1 extends the labelling of Pn. This gives us a unique labelling for the whole tiling.
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1-atlas Exactitude

The hidden difficulty

For now we have actually proved that XA1 ⊆ Xp i.e. we have proved that any tiling that is legal
for A1 is a Penrose tiling.
However this does not prove that XA1 is non-empty, and it does not prove either that Xp ⊆ XA1
i.e. that Penrose tilings are legal for A1.
To prove that we need to prove the proposition on Penrose’s 1-neighbourhoods i.e. we need to
prove that N 1

Xp
= A1.
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1-atlas Exactitude

First inclusion A1 ⊆ N 1
Xp
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1-atlas Exactitude

Second inclusion N 1
Xp

⊆ A1

Hard to prove.
Goal: use know properties of Xp to find a finite fragment of tiling which contains all the
1-neighbourhoods.

Theorem (substitution)

Penrose’s rhombus tilings are substitution tilings.
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1-atlas Exactitude

Linear recurrence

Uniformly recurrent: for any pattern P, there exists a diameter D such that P appears in any
disk of diameter D of the tiling.
Linearly recurrent: there exists a constant C such that for any pattern P, P appears in any disk
of diameter C · diam(P) of the tiling.
Similitude substitution: a vertex-hierarchic substitution where the expansion is a direct similitude
of the plane.

Theorem ([Solomyak, 1998])

Primitive similitude substitution tilings are linearly recurrent.
Moreover the linear recurrence factor C is bounded by

C ⩽
C0 · λ

C1

where λ is the scaling factor of the substitution, C0 is the appearance radius of the 0-patterns,
and C1 is the minimum inner diameter of the tiles.

Note that the existence of C0 is a consequence of the primitivity of the substitution.
Note also that if the substitution is not a similitude substitution we only have uniform recurrence.
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1-atlas Exactitude

An upper bound on Penrose’s linear recurrence factor

C ⩽
C0 · λ

C1

1 λ is the scaling factor of the Penrose substitution : λ = 1+
√

5
2 ≈ 1.618

2 C1 is the inner radius of the narrow rhombus tile : C1 = 2 cos( 2π
5 ) sin( 2π

5 ) ≈ 0.588

3 C0 is the radius of appearance of the 0-patterns in Penrose tilings, we have :
rc ⩽ C0 ⩽ rc + rv with

rv = λ3 · r1 = λ3 · 1
2 sin( 3π

10 )
= λ2 ≈ 2.618

where r1 is the maximum distance from a point of R2 to a vertex in a Penrose tiling.
rc =

√
a2 + b2 − 2 · a · b · c ≈ 6.613

with a = 2 + 4 cos π
5 + 2 cos 2π

5 , b = 2 cos 3π
10 and c = cos 7π

10 .
Here rc is the radius of appearance of the 0-patterns up to isometry in the 3rd image of the
0-patterns.

in particular C0 ⩽ 9.232

⇒ Penrose’s linear "up-to-isometry" recurrence factor C ⩽ C0·λ
C1

⩽ 25.414.
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0-patterns.

in particular C0 ⩽ 9.232

⇒ Penrose’s linear "up-to-isometry" recurrence factor C ⩽ C0·λ
C1

⩽ 25.414.
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1-atlas Exactitude

An upper bound on the appearance radius of 1-neighbourhoods

We have C ⩽ 25.414.
The maximum possible diameter of a 1-pattern with geometrical Penrose rhombus tiles is
2(1 + 2 cos π

10 ).

⇒ all 1-patterns of Penrose tilings appear up to isometry in any patch of diameter DA1 with

DA1 := 2(1 + 2 cos π
10 ) · C ⩽ 147.51.

Lutfalla (LIPN, LIS) Penrose 2022 34 / 40



1-atlas Exactitude

The fragment that contains all 1-neighbourhoods
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Conclusion

Conclusion

1 the 0-atlas does not characterise the geometrical Penrose rhombus tilings Xp ,

2 the 1-atlas characterises the geometrical Penrose rhombus tilings Xp ,
in particular this means that Xp is a Subshift of Finite Type.

3 the 1-atlas A1 := N 1
Xp

is :

(up to isometry).
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Related results and future work

Planar rosa tilings

The (canonical) Penrose rhombus tiling is both a quasicrystal tiling and substitution tiling with
global 5-fold rotational symmetry.
Question: do substitution quasicrystal tilings exist for any order of rotationaly symmetry?

Theorem ([Kari and Lutfalla, 2021] [Kari and Lutfalla, 2022])

the Sub Rosa tilings [Kari and Rissanen, 2016] are not quasicrystal tilings.
the Planar Rosa tilings are substitution quasicrystal tilings with 2n-fold rotational symmetry.

Future work:
determine if the Planar Rosa tilings are cut-and-project.
characterise the slopes of substitution quasicrystal tilings.
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Related results and future work

The multigrid method

The (canonical) Penrose rhombus tiling is P5( 1
5 ), the 5-fold multigrid dual tiling with offset 1

5 .

Theorem ([Lutfalla, 2021])

For any odd n, the n-fold multigrid dual tiling Pn( 1
n ) is a rhombus cut-and-project tiling with

n-fold rotational symmetry.
For any n, the n-fold multigrid dual tiling Pn( 1

2 ) is a rhombus cut-and-project tiling with
2n-fold rotational symmetry.
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Related results and future work

The multigrid method

The (canonical) Penrose rhombus tiling is P5( 1
5 ), the 5-fold multigrid dual tiling with offset 1

5 .

Theorem ([Lutfalla, 2021])

For any odd n, the n-fold multigrid dual tiling Pn( 1
n ) is a rhombus cut-and-project tiling with

n-fold rotational symmetry.
For any n, the n-fold multigrid dual tiling Pn( 1

2 ) is a rhombus cut-and-project tiling with
2n-fold rotational symmetry.

X5 := subshift of 5-fold multigrid dual tiling.
We know that X5 is not minimal and that Xp ⊊ X5.
Future work: study the decomposition of X5 in minimal subshifts.
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General substitution and linear recurrence a counterexample
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Substitution and linear recurrence idea of the proof
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Penrose as a cut-and-project
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Penrose as a cut-and-project
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Antipenrose
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Computing C0

rc =
√

a2 + b2 − 2 · a · b · c ≈ 6.613
with a = 2 + 4 cos π

5 + 2 cos 2π
5 , b = 2 cos 3π

10 and c = cos 7π
10 .
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Forbidden patterns
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