Strong local rules without labels for Penrose rhombus tilings

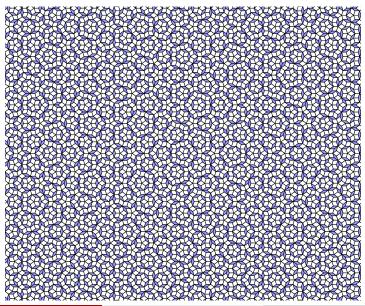
Victor H. Lutfalla with Thomas Fernique

2022

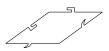
- Penrose tilings
 - Definition of the Penrose rhombus tilings
 - First properties
 - Additional properties
 - Main result
- 2 Vertex-atlas
 - Definition
 - O-atlas
- 1-atlas
 - Definition
 - Unique labelling
 - Propagation
 - Exactitude
- Conclusion
- Selated results and future work

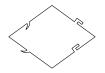
- Penrose tilings
 - Definition of the Penrose rhombus tilings
 - First properties
 - Additional properties
 - Main result
- Vertex-atlas
 - Definition
 - 0-atlas
- 🕨 1-atlas
 - Definition
 - Unique labelling
 - Propagation
 - Exactitude
- Conclusion
- 5 Related results and future work

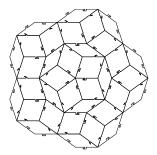
Penrose rhombus tiling

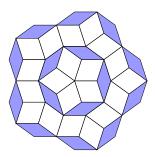


Original definition [Penrose, 1974]

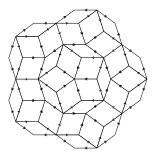


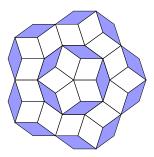






Improved definition [De Bruijn, 1981]





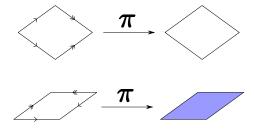
Label simplification

A bit of formalism:

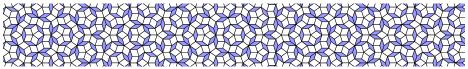
- geometrical tile : t a compact of \mathbb{R}^2 , here a rhombus,
- labelled tile : (t, l) with t a geometrical tile, and l a function from t to a finite alphabet A, label condition: for any two tiles (t, l) and (t', l'), we have $\forall x \in t \cap t'$, l(x) = l'(x).

The label simplification π is defined as $\pi(t, l) = t$.

 $X_a :=$ tilings with the arrow-labelled tiles, $X_p := \pi(X_a)$ its projection.



First properties [Grünbaum and Shephard, 1987]



The subshift of geometrical Penrose rhombus tilings X_p is defined as:

$$X_p := \pi(X_a)$$

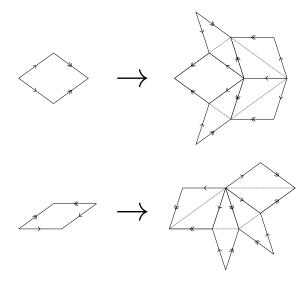
First properties:

- **1** X_p is non empty.
- **2** X_p is aperiodic *i.e.* does not contain any periodic tilings.

Remark

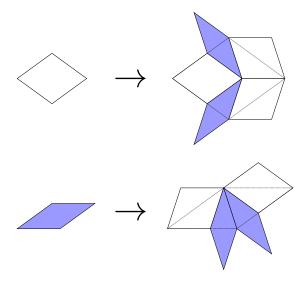
We call this a sofic aperiodic subshift *i.e.* the projection of a SFT.

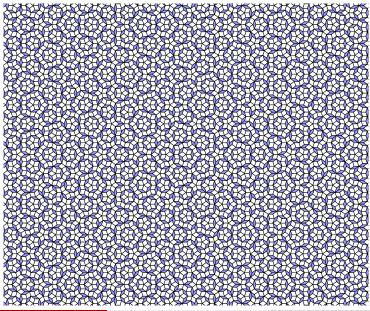
Substitution

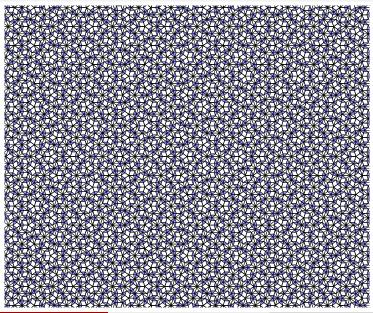


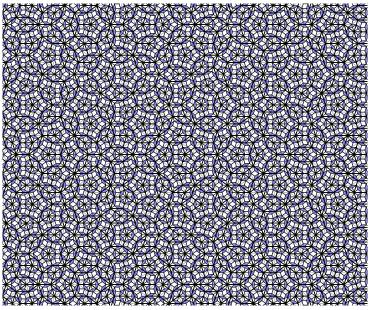
 $X_p=\pi(X_\sigma)$

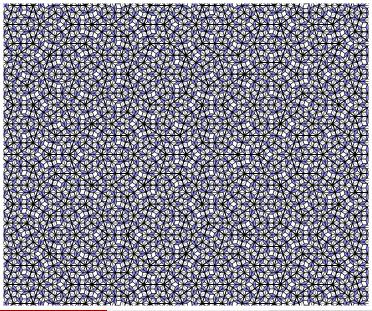
Substitution

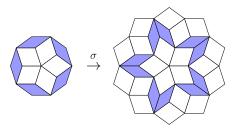


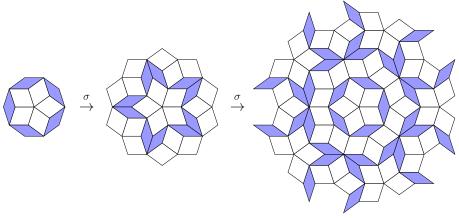




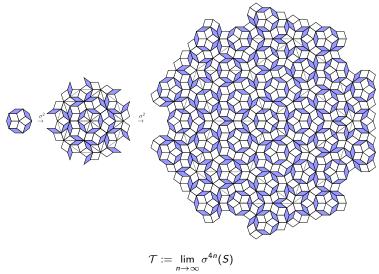








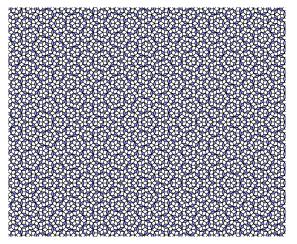
By compacity there exists a Penrose tiling of the full plane.



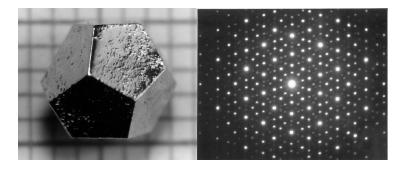
Canonical Penrose tiling and rotational symmetry

Crystallographic restriction: periodic tilings can only have 2, 3, 4 or 6-fold rotational symmetry. \Rightarrow a tiling with 10-fold rotational symmetry is non-periodic.

The Penrose tilings have local 10-fold rotational symmetry, so they are non-periodic.

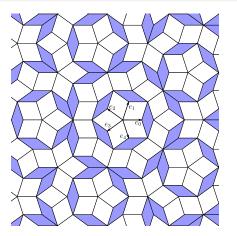


Quasicrystal tiling [Senechal, 1996]



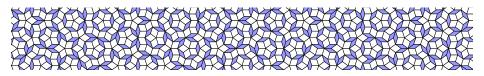
Quasicrystal : sharp diffraction pattern, but non-periodic.

Quasicrystal tilings



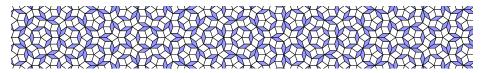
Two models for quasicrystal tilings: **Discrete plane** : lifted in \mathbb{R}^n it approximates a plane. **Cut-and-project** : lifted in \mathbb{R}^n it strongly approximates a plane : its vertex set is exactly $(\mathcal{E} + \Omega) \mathbb{Z}^n$ where \mathcal{E} is the plane and Ω a compact.

Penrose tiling overview [Baake and Grimm, 2013]



The Penrose subshift X_p is :

- an aperiodic subshift with 10-fold local symmetry
- a sofic subshift $X_p = \pi(X_a)$
- a substitution subshift $X_p = X_\sigma$
- a subshift of quasicrystal tilings



Today's result

Theorem (folk., Fernique-L. 2022)

There exists a finite set of local rules without labels for Penrose rhombus tilings.

 $\Rightarrow X_p$ is a Subshift of Finite Type.

Remark

The local rules will be given by a set of allowed patterns called vertex atlas instead of a set of forbidden patterns.

Note that for tilings with finite local complexity a (finite) vertex-atlas is equivalent to a finite set of forbidden patterns.

Vertex-atlas

- Penrose tilings
 - Definition of the Penrose rhombus tilings
 - First properties
 - Additional properties
 - Main result

- Definition
- 0-atlas
- 🛯 1-atlas
 - Definition
 - Unique labelling
 - Propagation
 - Exactitude
- Conclusion
- 5 Related results and future work

Vertex-atlas

Definition

Local rules: vertex-atlas

N^k_T(x) : the k-neighbourhood of a vertex x in a tiling is the patch of tiles that are at
edge-distance at most k from x.

For example the 0-neighbourhood of a vertex x is the patch of tiles that directly touch x.

• **A**_k : a k-vertex atlas is a set of k-neighbourhoods.

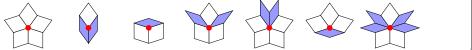
- $\mathcal{N}_{\mathcal{T}}^k$: the set of all *k*-neighbourhoods of the tiling \mathcal{T} (or subshift X).
- $X_{\mathbf{A}}$: subshift of all the tilings \mathcal{T} such that $\mathcal{N}_{\mathcal{T}}^k \subseteq \mathbf{A}$.

0-atlas

0-atlas

Definition

Let us define \mathbf{A}_0 as pictured below up to isometry



Proposition (folk.)

With X_p the Penrose subshift we have

$$\mathcal{N}_{X_{\rho}}^{0}=\mathbf{A}_{0}.$$

Theorem

With X_p the Penrose subshift we have

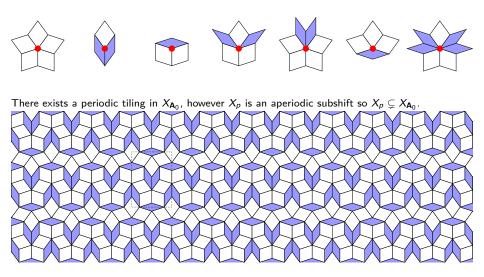
$$X_p \subsetneq X_{\mathbf{A}_0},$$

i.e. there are tilings that have the same 0-neighbourhoods as Penrose but are not Penrose tilings.

Lutfalla (L	IPN, LIS
-------------	----------

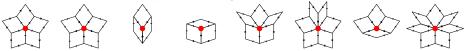
0-atlas

Proof

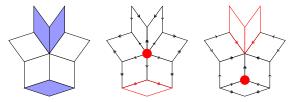


The key point of why it does not work (and why some people think it does).

The patterns in A_0 admit a unique valid labelling, except the 5-star that admits two.



However that does not mean that a pattern that is valid for A_0 admits a valid labelling, the labelling "does not propagate" :



1-atlas

- Penrose tilings
 - Definition of the Penrose rhombus tilings
 - First properties
 - Additional properties
 - Main result
- Vertex-atlas
 - Definition
 - 0-atlas

3 1-atlas

- Definition
- Unique labelling
- Propagation
- Exactitude

Conclusion

5 Related results and future work

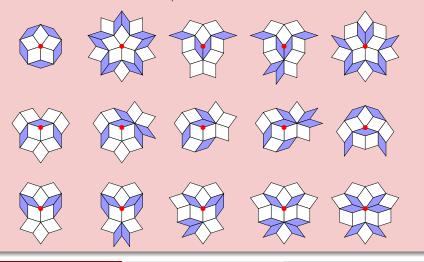
1-atlas

Definition

Penrose's 1-neighbourhoods

Proposition (1-neighbourhoods)

With X_{ρ} the Penrose subshift we have $\mathcal{N}^1_{X_{\rho}} = \mathbf{A}_1$ (pictured here up to isometry)



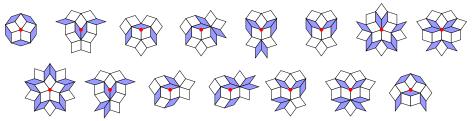
Definition

The 1-atlas defines Penrose

Theorem

With X_p the Penrose subshift, and with the 1-atlas A_1 defined in the previous proposition we have

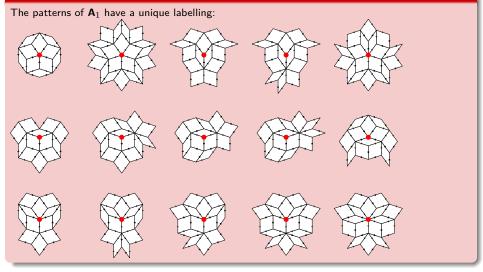
$$X_{\mathbf{A}_1} = X_p.$$



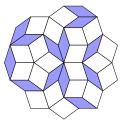
Recall that initially the Penrose subshift is defined as a sofic subshift with $X_{\rho} := \pi(X_a)$, now with this characterisation $X_{\rho} = X_{\mathbf{A}_1}$ we obtain that X_{ρ} is a Subshift of Finite Type (SFT).

Unique labelling

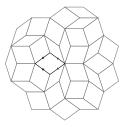
Proposition



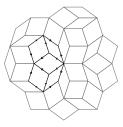
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



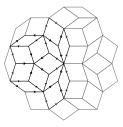
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



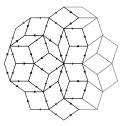
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



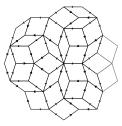
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



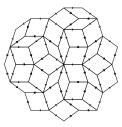
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



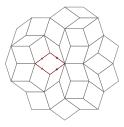
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



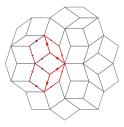
Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.

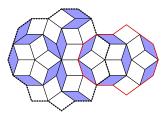


Let P be an edge-connected patch of geometrical Penrose tiles. Let t be a tile in P. Let I(t) be a Penrose labelling of the tile t.



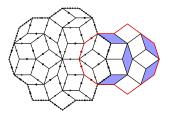
Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



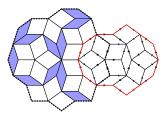
Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



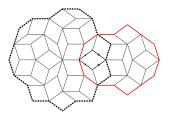
Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



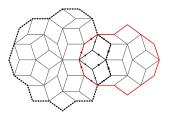
Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



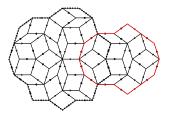
Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



Let P_1 and P_2 be two edge-connected patches of geometrical Penrose tiles such that :

- $P_1 \cup P_2$ is a patch (i.e. simply connected set of non-overlapping tiles)
- $P_1 \cap P_2$ is non-empty and edge-connected
- $P_1 \setminus P_2$ is not edge connected to $P_2 \setminus P_1$
- P_1 has a valid Penrose labelling \mathcal{L}_1
- P_2 has a valid Penrose labelling \mathcal{L}_2



1-atlas Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P. We say that a finite patch P is *exact* for \mathbf{A}_1 if, with $V_1(P)$ the set of 1-interior vertices of P, $V_1(P)$ is connected, we have $\mathcal{N}_P^{\times}(1) \in \mathbf{A}_1$ for all $x \in V_1(P)$ and P is exactly the union of the 1-neighbourhoods.

Proposition

Let *P* be an exact patch for the vertex-atlas A_1 . *P* admits a unique valid Penrose labelling \mathcal{L} . 1-atlas Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P. We say that a finite patch P is exact for A_1 if, with $V_1(P)$ the set of 1-interior vertices of P, $V_1(P)$ is connected, we have $\mathcal{N}_P^{\times}(1) \in \mathbf{A}_1$ for all $x \in V_1(P)$ and P is exactly the union of the 1-neighbourhoods.

Proposition

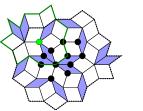
Let P be an exact patch for the vertex-atlas A_1 . *P* admits a unique valid Penrose labelling \mathcal{L} .

Proof.

By induction on the number of 1-interior vertices.

1: an exact patch with 1 1-interior vertex is exactly a 1neighbourhood, *i.e.* a patch in A_1 up to isometry, these patch have a valid Penrose labelling.

 $\mathbf{n} \rightarrow \mathbf{n} + \mathbf{1}$: we can decompose P_{n+1} as $P_n \cup P$ with P_n an exact patch (for A_1) with *n* 1-interior vertices and *P* an exact patch with 1 1-interior vertex. We apply the previous lemma



Note that the fact that both P_{n+1} and P_n are exact patches is a strong condition. This means that P is the 1-neighbourhood of a suitably chosen vertex $v \in V_1(P_{n+1})$. 1-atlas Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P. We say that a finite patch P is *exact* for \mathbf{A}_1 if, with $V_1(P)$ the set of 1-interior vertices of P, $V_1(P)$ is connected, we have $\mathcal{N}_P^{\times}(1) \in \mathbf{A}_1$ for all $x \in V_1(P)$ and P is exactly the union of the 1-neighbourhoods.

Proposition

Let *P* be an exact patch for the vertex-atlas A_1 . *P* admits a unique valid Penrose labelling \mathcal{L} .

Proposition

Let \mathcal{T} be a valid tiling for \mathbf{A}_1 . \mathcal{T} has a (unique) valid Penrose labelling and so it is a Penrose tiling. 1-atlas

Propagation

We call 1-interior vertices of P the vertices of which the 1-neighbourhood is complete in P. We say that a finite patch P is exact for A_1 if, with $V_1(P)$ the set of 1-interior vertices of P, $V_1(P)$ is connected, we have $\mathcal{N}_P^{\times}(1) \in \mathbf{A}_1$ for all $x \in V_1(P)$ and P is exactly the union of the 1-neighbourhoods.

Proposition

Let P be an exact patch for the vertex-atlas A_1 . P admits a unique valid Penrose labelling \mathcal{L} .

Proposition

Let \mathcal{T} be a valid tiling for \mathbf{A}_1 . \mathcal{T} has a (unique) valid Penrose labelling and so it is a Penrose tiling.

Proof

We can build a sequence of increasing (non-empty) exact patches $(P_n)_{n \in \mathbb{N}}$ that tends to the whole tiling.

For all n we have $P_n \subseteq P_{n+1}$, and P_n has a unique valid Penrose labelling. So the labelling of P_{n+1} extends the labelling of P_n . This gives us a unique labelling for the whole tiling.

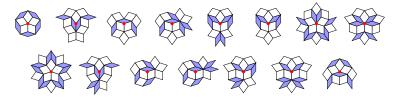
1-atlas Exactitude

The hidden difficulty

For now we have actually proved that $X_{A_1} \subseteq X_p$ *i.e.* we have proved that any tiling that is legal for A_1 is a Penrose tiling.

However this does not prove that X_{A_1} is non-empty, and it does not prove either that $X_p \subseteq X_{A_1}$ *i.e.* that Penrose tilings are legal for A_1 .

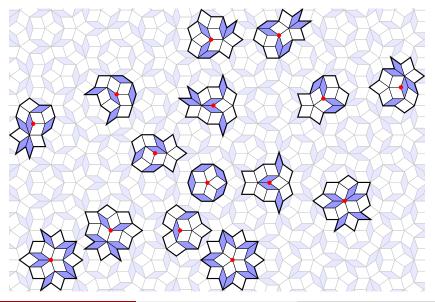
To prove that we need to prove the proposition on Penrose's 1-neighbourhoods *i.e.* we need to prove that $\mathcal{N}_{X_p}^1 = \mathbf{A}_1$.



1-atlas

Exactitude

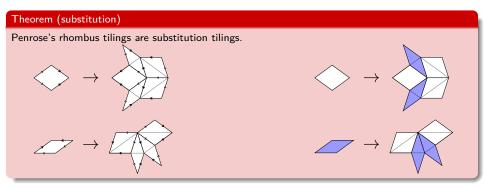
First inclusion $\textbf{A}_1 \subseteq \mathcal{N}^1_{X_p}$



Second inclusion $\mathcal{N}^1_{X_p} \subseteq \mathbf{A}_1$

Hard to prove.

Goal: use know properties of X_p to find a finite fragment of tiling which contains all the 1-neighbourhoods.



1-atlas Exactitude

Linear recurrence

Uniformly recurrent: for any pattern P, there exists a diameter D such that P appears in any disk of diameter D of the tiling.

Linearly recurrent: there exists a constant C such that for any pattern P, P appears in any disk of diameter $C \cdot \operatorname{diam}(P)$ of the tiling.

Similitude substitution: a vertex-hierarchic substitution where the expansion is a direct similitude of the plane.

Theorem ([Solomyak, 1998])

Primitive similitude substitution tilings are linearly recurrent. Moreover the linear recurrence factor C is bounded by

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

where λ is the scaling factor of the substitution, C_0 is the appearance radius of the 0-patterns, and C_1 is the minimum inner diameter of the tiles.

Note that the existence of C_0 is a consequence of the primitivity of the substitution. Note also that if the substitution is not a similitude substitution we only have uniform recurrence.

An upper bound on Penrose's linear recurrence factor

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

() λ is the scaling factor of the Penrose substitution : $\lambda=\frac{1+\sqrt{5}}{2}\approx 1.618$

Exactitude

An upper bound on Penrose's linear recurrence factor

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

() λ is the scaling factor of the Penrose substitution : $\lambda = \frac{1+\sqrt{5}}{2} \approx 1.618$

(a) C_1 is the inner radius of the narrow rhombus tile : $C_1 = 2\cos(\frac{2\pi}{5})\sin(\frac{2\pi}{5}) \approx 0.588$

Exactitude

An upper bound on Penrose's linear recurrence factor

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

- **()** λ is the scaling factor of the Penrose substitution : $\lambda = \frac{1+\sqrt{5}}{2} \approx 1.618$
- (a) C_1 is the inner radius of the narrow rhombus tile : $C_1 = 2\cos(\frac{2\pi}{5})\sin(\frac{2\pi}{5}) \approx 0.588$
- (a) C₀ is the radius of appearance of the 0-patterns in Penrose tilings, we have : $r_c \leqslant C_0 \leqslant r_c + r_v$ with

An upper bound on Penrose's linear recurrence factor

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

() λ is the scaling factor of the Penrose substitution : $\lambda = \frac{1+\sqrt{5}}{2} \approx 1.618$

2 C_1 is the inner radius of the narrow rhombus tile : $C_1 = 2\cos(\frac{2\pi}{5})\sin(\frac{2\pi}{5}) \approx 0.588$

(a) C₀ is the radius of appearance of the 0-patterns in Penrose tilings, we have : $r_c \leqslant C_0 \leqslant r_c + r_v$ with

•
$$r_v = \lambda^3 \cdot r_1 = \lambda^3 \cdot \frac{1}{2\sin(\frac{3\pi}{10})} = \lambda^2 \approx 2.618$$

where r_1 is the maximum distance from a point of \mathbb{R}^2 to a vertex in a Penrose tiling.

•
$$r_c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot c} \approx 6.613$$

with $a = 2 + 4\cos\frac{\pi}{5} + 2\cos\frac{2\pi}{5}$, $b = 2\cos\frac{3\pi}{10}$ and $c = \cos\frac{7\pi}{10}$. Here r_c is the radius of appearance of the 0-patterns up to isometry in the 3rd image of the 0-patterns.

in particular $C_0 \leq 9.232$

Exactitude

An upper bound on Penrose's linear recurrence factor

$$C \leqslant \frac{C_0 \cdot \lambda}{C_1}$$

() λ is the scaling factor of the Penrose substitution : $\lambda=\frac{1+\sqrt{5}}{2}\approx 1.618$

2 C_1 is the inner radius of the narrow rhombus tile : $C_1 = 2\cos(\frac{2\pi}{5})\sin(\frac{2\pi}{5}) \approx 0.588$

(a) C₀ is the radius of appearance of the 0-patterns in Penrose tilings, we have : $r_c \leqslant C_0 \leqslant r_c + r_v$ with

•
$$r_v = \lambda^3 \cdot r_1 = \lambda^3 \cdot \frac{1}{2\sin(\frac{3\pi}{10})} = \lambda^2 \approx 2.618$$

where r_1 is the maximum distance from a point of \mathbb{R}^2 to a vertex in a Penrose tiling.

• $r_c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot c} \approx 6.613$ with $a = 2 + 4 \cos \frac{\pi}{5} + 2 \cos \frac{2\pi}{5}$, $b = 2 \cos \frac{3\pi}{10}$ and $c = \cos \frac{7\pi}{10}$. Here r_c is the radius of appearance of the 0-patterns up to isometry in the 3rd image of the 0-patterns.

in particular $C_0 \leqslant 9.232$

⇒ Penrose's linear "up-to-isometry" recurrence factor $C \leqslant \frac{C_0 \cdot \lambda}{C_1} \leqslant 25.414$.

An upper bound on the appearance radius of 1-neighbourhoods

We have $C \leq 25.414$. The maximum possible diameter of a 1-pattern with geometrical Penrose rhombus tiles is $2(1 + 2\cos\frac{\pi}{10})$.

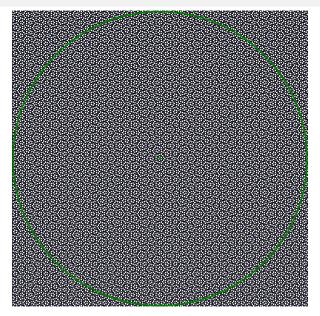
 \Rightarrow all 1-patterns of Penrose tilings appear up to isometry in any patch of diameter \mathcal{D}_{A_1} with

$$\mathcal{D}_{\mathsf{A}_1} := 2(1+2\cos\frac{\pi}{10}) \cdot C \leqslant 147.51.$$

1-atlas E

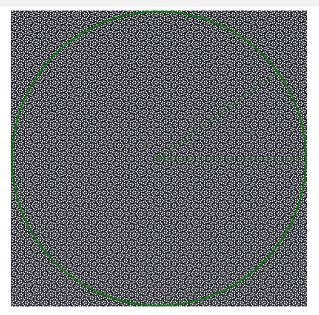
Exactitude

The fragment that contains all 1-neighbourhoods



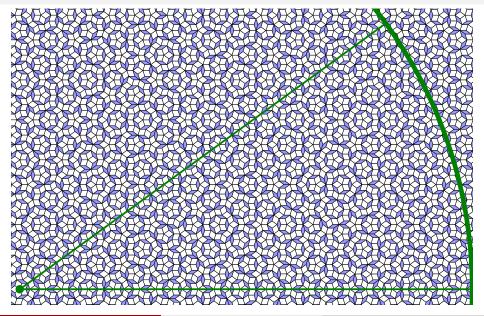
1-atlas E

The fragment that contains all 1-neighbourhoods



1-atlas Exactitude

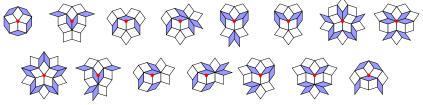
The fragment that contains all 1-neighbourhoods



Conclusion

- the 0-atlas does not characterise the geometrical Penrose rhombus tilings X_p,
- (a) the 1-atlas characterises the geometrical Penrose rhombus tilings X_p , in particular this means that X_p is a Subshift of Finite Type.

 \bullet the 1-atlas $A_1 := \mathcal{N}^1_{X_n}$ is :



(up to isometry).

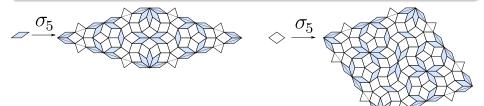
Planar rosa tilings

The (canonical) Penrose rhombus tiling is both a quasicrystal tiling and substitution tiling with global 5-fold rotational symmetry.

Question: do substitution quasicrystal tilings exist for any order of rotationaly symmetry?

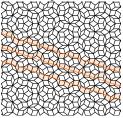
Theorem ([Kari and Lutfalla, 2021] [Kari and Lutfalla, 2022])

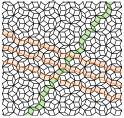
- the Sub Rosa tilings [Kari and Rissanen, 2016] are not quasicrystal tilings.
- the Planar Rosa tilings are substitution quasicrystal tilings with 2n-fold rotational symmetry.

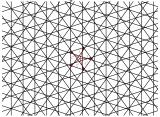


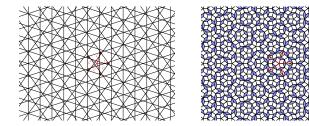
Future work:

- determine if the Planar Rosa tilings are cut-and-project.
- characterise the slopes of substitution quasicrystal tilings.

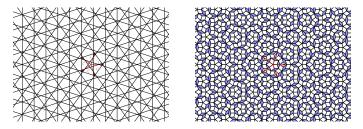








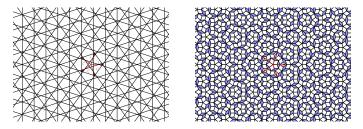
The (canonical) Penrose rhombus tiling is $\mathcal{P}_5(\frac{1}{5})$, the 5-fold multigrid dual tiling with offset $\frac{1}{5}$.



Theorem ([Lutfalla, 2021])

- For any **odd** n, the *n*-fold multigrid dual tiling $\mathcal{P}_n(\frac{1}{n})$ is a rhombus cut-and-project tiling with *n*-fold rotational symmetry.
- For any *n*, the *n*-fold multigrid dual tiling $\mathcal{P}_n(\frac{1}{2})$ is a rhombus cut-and-project tiling with 2*n*-fold rotational symmetry.

The (canonical) Penrose rhombus tiling is $\mathcal{P}_5(\frac{1}{5})$, the 5-fold multigrid dual tiling with offset $\frac{1}{5}$.



Theorem ([Lutfalla, 2021])

- For any **odd** *n*, the *n*-fold multigrid dual tiling $\mathcal{P}_n(\frac{1}{n})$ is a rhombus cut-and-project tiling with *n*-fold rotational symmetry.
- For any *n*, the *n*-fold multigrid dual tiling $\mathcal{P}_n(\frac{1}{2})$ is a rhombus cut-and-project tiling with 2*n*-fold rotational symmetry.

 $X_5 :=$ subshift of 5-fold multigrid dual tiling. We know that X_5 is not minimal and that $X_p \subsetneq X_5$. **Future work:** study the decomposition of X_5 in minimal subshifts.

Baake, M. and Grimm, U. (2013). Aperiodic Order: A Mathematical Invitation. Cambridge University Press.

De Bruijn, N. G. (1981).

Algebraic theory of penrose's nonperiodic tilings of the plane. i and ii.

Kon. Nederl. Akad. Wetensch. Proc. Ser. A. doi:10.1016/1385-7258(81)90016-0.

Grünbaum, B. and Shephard, G. C. (1987). *Tilings and patterns*.

Courier Dover Publications.

Kari, J. and Lutfalla, V. H. (2021). Substitution planar tilings with *n*-fold rotational symmetry. to appear in DCG arXiv:2010.01879.

Kari, J. and Lutfalla, V. H. (2022).

Planar rosa : a family of quasiperiodic substitution discrete plane tilings with 2n-fold rotational symmetry.

Kari, J. and Rissanen, M. (2016).

Sub rosa, a system of quasiperiodic rhombic substitution tilings with n-fold rotational symmetry.

Discrete & Computational Geometry. doi:10.1007/s00454-016-9779-1.

Lutfalla, V. H. (2021).

An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry.

In *AUTOMATA 2021*. doi:10.4230/OASIcs.AUTOMATA.2021.9.

Penrose, R. (1974).

The role of aesthetics in pure and applied mathematical research. *Bull. Inst. Math. Appl.*

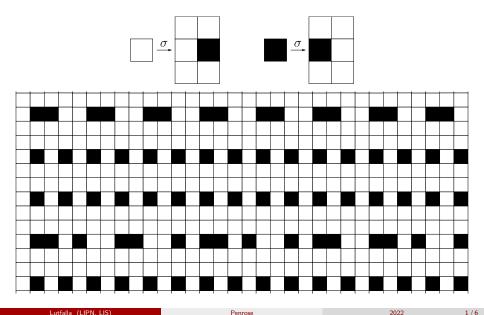
Senechal, M. (1996).

Quasicrystals and geometry. CUP Archive.

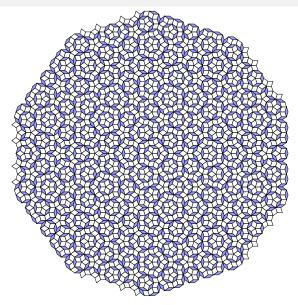
Solomyak, B. (1998).

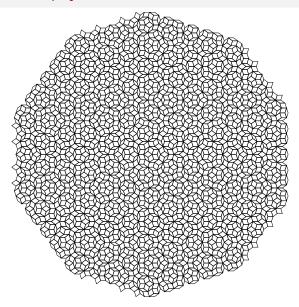
Nonperiodicity implies unique composition for self-similar translationally finite tilings. *Discrete & Computational Geometry*.

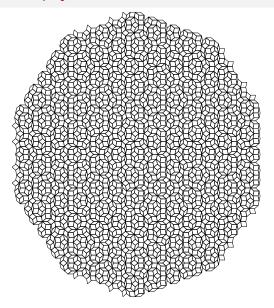
General substitution and linear recurrence a counterexample

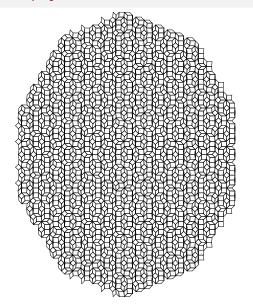


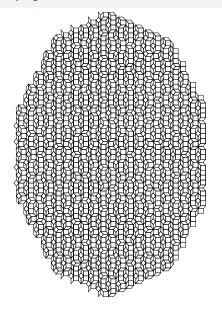
Substitution and linear recurrence idea of the proof

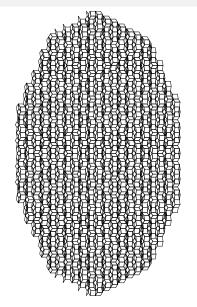


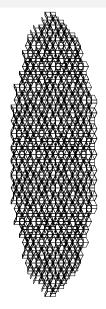






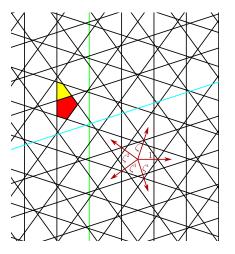


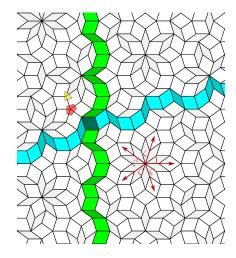




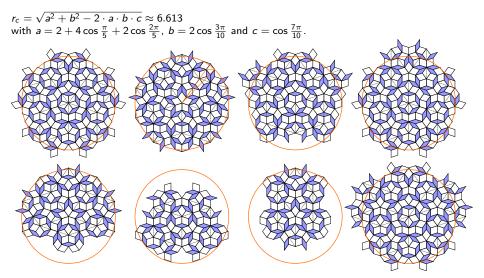
Lutfalla (LIPN, LIS)

Antipenrose





Computing C_0



Forbidden patterns